25=(10(t)^2)/2+5t

Simple and best practice solution for 25=(10(t)^2)/2+5t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25=(10(t)^2)/2+5t equation:



25=(10(t)^2)/2+5t
We move all terms to the left:
25-((10(t)^2)/2+5t)=0
Domain of the equation: 2+5t)!=0
We move all terms containing t to the left, all other terms to the right
5t)!=-2
t!=-2/1
t!=-2
t∈R
determiningTheFunctionDomain -(10t^2/2+5t)+25=0
We get rid of parentheses
-10t^2/2-5t+25=0
We multiply all the terms by the denominator
-10t^2-5t*2+25*2=0
We add all the numbers together, and all the variables
-10t^2-5t*2+50=0
Wy multiply elements
-10t^2-10t+50=0
a = -10; b = -10; c = +50;
Δ = b2-4ac
Δ = -102-4·(-10)·50
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{21}}{2*-10}=\frac{10-10\sqrt{21}}{-20} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{21}}{2*-10}=\frac{10+10\sqrt{21}}{-20} $

See similar equations:

| -2x+5=7(x+2) | | 13=11-4a | | x+4−3x=4−(x−1) | | x+1/3-4x=10 | | 25=5t^2+5t | | x(1.07)(1.1)=24 | | b-3=2b-3 | | x(1.07)+(1.1)=24 | | x+(1.07)+(1.1)=24 | | a=1/2(10+15) | | x+1.07+1.1=24 | | s^2-4s=3s+30 | | 3(x-12)=2(x+7) | | 10x-1=5x+7 | | a=25(1/2) | | 6(x)-13+3(-144)+1=180 | | a=251/2 | | 15w4=28 | | 6(24)-13+3y+1=180 | | 9n^2-27n-486=0 | | 6^3x=24 | | 0.074x+5.409=0.06x+5.402 | | -2=y/16 | | 64-w=2w-2 | | -180=-4(5-5x) | | 24=4s | | 5(x+5)/6=4x-4 | | 3(x+4)=−18 | | 5x-(2x+7)=5x-47 | | 10q+3q+5=2 | | -7b=-5/7 | | 0.5x+0.28(200)=0.25(188) |

Equations solver categories